Probabilistic Bijections for Non-Attacking Fillings

Guilherme Zeus Dantas e Moura (joint work with Olya Mandelshtam)

University of Waterloo

May 21, 2025

CanaDAM 2025, Algebraic Combinatorics Minisymposium

Part I

Macdonald Polynomials and Non-Attacking Fillings

Macdonald Polynomials

Symmetric Macdonald polynomials

(Macdonald 1988)

$$P_{\lambda}(x_1,\ldots,x_n;q,t)$$

where λ is a partition.

- Unique basis under triangularity and orthogonality conditions.
- Extension of Jack polynomials, Hall-Littlewood polynomials, q-Wittaker polynomials, Schur polynomials.

Nonsymmetric Macdonald polynomials

(Macdonald 1996)

$$E_{\alpha}(x_1,\ldots,x_n;q,t)$$

where α is a composition.

- Help understand symmetric Macdonald polynomials.
- Extend Demazure characters (key polynomials) and atom polynomials.

Permuted Basement Macdonald Polynomials

Permuted basement Macdonald polynomials

(Ferreira 2011)

$$E_{\alpha}^{\sigma}(x_1,\ldots,x_n;q,t)$$

where α is a composition and σ is a permutation.

They can be described as:

- a transformation of nonsymmetric Macdonald polynomials by Demazure–Lusztig operators,
- eigenfunctions of a version of Cherednik–Dunkl operators,
- the weight generating functions of **non-attacking fillings**.

Augmented Skyline Diagrams

Augmented skyline diagram of a composition α :

$$(basement = row 0 = red)$$

A pair of boxes is attacking if:

or consecutive rows top box to the right

Non-Attacking Fillings

A non-attacking filling of shape α is an assignment of numbers $\{1, ..., n\}$ to the diagram of α such that attacking boxes have different entries.

The **basement** of a filling is the permutation $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n) \in S_n$ of the entries in the basement row, from left to right.

e.g. shape
$$\alpha = (2,2,0,1)$$
 and basement $\sigma = [3,1,2,4]$

The **content** counts how many *i*'s are in the filling (excluding the basement).

e.g. the filling above has content (1,2,0,2)

$$x^T = x_1^1 x_2^2 x_3^0 x_4^2$$

Statistics of Non-Attacking Fillings: maj and coinv

• major index: $\operatorname{maj}(T) = \sum_{T(u) > T(\text{south of } u)} (1 + \operatorname{leg}(u)),$

$$maj(T) = 1 + 1 + 2 = 4$$

coinversion number: coinv(T) = #{coinversion triples}

2 4 1 2 4 3 1 2 4	2 4 1 2 4 3 1 2 4	2 4 1 2 4 3 1 2 4	2 4 1 2 4 3 1 2 4	2 4 1 2 4 3 1 2 4
1 < 2 < 4	1 < 2 < 3	4 > 3 > 1	1 < 2 < 4	$4 \ge 4 > 2$
	(coinv(T) = 3	3	

Weight of a Non-Attacking Filling

$$\mathsf{wt}_{q,t}(T) = q^{\mathsf{maj}(T)} t^{\mathsf{coinv}(T)} \prod_{T(u) \neq T (\mathsf{south of } u)} \frac{1 - t}{1 - q^{1 + \mathsf{leg}(u)} t^{1 + \mathsf{arm}(u)}}$$

$$\operatorname{wt}_{q,t}(T) = q^4 t^3 \frac{(1-t)^4}{(1-q^2 t^3)(1-q^2 t^2)(1-qt^2)(1-qt)}.$$

Generating Function Formula

Generating function formula for E_{α}^{σ} (Ferreira 2011)

$$E_{\alpha}^{\sigma} = \sum_{T \in \mathsf{NAF}(\alpha, \sigma)} x^{T} \operatorname{wt}_{q, t}(T).$$

Motivation

Alexandersson (2019) studies symmetries of permuted basement Macdonald polynomials.

• One of the results involves E_{λ}^{σ} where σ is the **shortest** permutation that sends λ to a rearrangement α .

Corteel, Mandelshtam, and Williams (2022) study the asymmetric simple exclusion process (ASEP), a model of interacting particles.

• One of the results involves E_{λ}^{τ} where τ is the **longest** permutation that sends λ to a rearrangement α .

Theorem (D-Mandelshtam, 2025⁺)

$$E_{\lambda}^{\sigma}=E_{\lambda}^{\tau}$$

where σ (resp. τ) is the shortest (resp. longest) permutation that sends λ to a rearrangement α .

Main Result

More generally, we have the following result.

Theorem (D-Mandelshtam, 2025⁺)

Let α be a composition with $\alpha_i = \alpha_{i+1}$ and σ be a permutation. Then,

$$E_{\alpha}^{\sigma}=E_{\alpha}^{\sigma s_{i}},$$

where
$$\sigma s_i = [\sigma_1, \dots, \sigma_{i+1}, \sigma_i, \dots, \sigma_n]$$
.

How to prove it? Construct a probabilistic bijection between NAF(α , σ) and NAF(α , σs_i) when $\alpha_i = \alpha_{i+1}$.

Part II

Probabilistic Bijections

Generalizing the goal: F = G

F and G are weight generating functions of S and T. How to combinatorially prove

$$F = G$$
?

A strategy

Construct a weight-preserving bijection between S and T.

Weight-preserving Bijections

Weight-preserving bijections:

$$f: \mathbf{S} \to \mathbf{T}$$
 with an inverse $g: \mathbf{T} \to \mathbf{S}$

such that, whenever f(S) = T, we have

$$\operatorname{wt}(S) = \operatorname{wt}(T).$$

Proposition

If there exists a weight-preserving bijection between **S** and **T**, then

$$\sum_{S \in \mathbf{S}} \mathsf{wt}(S) = \sum_{T \in \mathbf{T}} \mathsf{wt}(T).$$

What about when it's hard (or impossible) to find a weight-preserving bijection?

Probabilistic Bijections

Probabilistic bijection: pair of maps to an algebra A (Frieden and Schreier-Aigner 2024) $\operatorname{prob}_{\mathbf{S}} \colon \mathbf{S} \times \mathbf{T} \to A$ and $\operatorname{prob}_{\mathbf{T}} \colon \mathbf{T} \times \mathbf{S} \to A$ such that, for all $S \in \mathbf{S}$ and $T \in \mathbf{T}$,

- probabilities sum to 1: $\sum_{T \in T} \operatorname{prob}_{S}(S, T) = 1$ and $\sum_{S \in S} \operatorname{prob}_{T}(T, S) = 1$,
- balance condition: $wt(S) \operatorname{prob}_{S}(S, T) = wt(T) \operatorname{prob}_{T}(T, S)$.

Proposition

If there exists a probabilistic bijection between ${\bf S}$ and ${\bf T}$, then

$$\sum_{S \in \mathbf{S}} \mathsf{wt}(S) = \sum_{T \in \mathbf{T}} \mathsf{wt}(T).$$

Proof of Proposition

Proposition

If there exists a probabilistic bijection between **S** and **T**, then

$$\sum_{S \in \mathbf{S}} \mathsf{wt}(S) = \sum_{T \in \mathbf{T}} \mathsf{wt}(T).$$

Proof

$$\begin{split} \sum_{S \in \mathbf{S}} 1 \cdot \mathsf{wt}(S) &= \sum_{S \in \mathbf{S}} \sum_{T \in \mathbf{T}} \mathsf{prob}_{\mathbf{S}}(S, T) \, \mathsf{wt}(S) & \text{(probabilities sum to 1)} \\ &= \sum_{T \in \mathbf{T}} \sum_{S \in \mathbf{S}} \mathsf{prob}_{\mathbf{T}}(T, S) \, \mathsf{wt}(T) & \text{(balance condition)} \\ &= \sum_{T \in \mathbf{T}} 1 \cdot \mathsf{wt}(T). & \text{(probabilities sum to 1)} \end{split}$$

Example (Spoiler)

Part III

Probabilistic Bijections for Non-Attacking Fillings

Goal and Sketch

Goal

Construct a probabilistic bijection between NAF(α, σ) and NAF($\alpha, \sigma s_i$), where $\alpha_i = \alpha_{i+1}$.

• Naive idea: Just swap the entries σ_i and σ_{i+1} in the basement.

$$\begin{array}{c} \vdots \\ \cdots \\ c \\ d \\ \cdots \\ a \\ b \\ \end{array} \xrightarrow{\text{swap } \sigma_i \text{ and } \sigma_{i+1}} \begin{array}{c} \vdots \\ \vdots \\ \cdots \\ c \\ d \\ \cdots \\ b \\ a \\ \end{array} \xrightarrow{c \\ c \\ d \\ \cdots \\ b \\ a \\ \end{array}$$

- An issue: The resulting filling may be attacking.
- Idea for fix: If the resulting filling is attacking, swap entries in the top row as well, and so on.
- **Refinement:** To take care of the weights, assign probabilities to each step.

Definition of the Probabilistic Algorithm by Example

$$\alpha = (3,4,4,0,0),$$
 $\sigma = [5,1,3,4,2]$
 $i = 2$ $\sigma s_i = [5,3,1,4,2]$

Definition of the Probabilistic Operator by Example

All rules about moving the pointer 🖝

It is a probabilistic bijection!

Theorem (D-Mandelshtam, 2025⁺)

The algorithm describes a probabilistic bijection between NAF(α , σ) and NAF(α , σ s_i).

Summary

- Probabilistic bijections generalize weight-preserving bijections.
- Write the permuted basement Macdonald polynomial E_{α}^{σ} as the generating function of non-attacking fillings NAF(α, σ).
- Construct a probabilistic bijection between NAF(α , σ) and NAF(α , σs_i) when $\alpha_i = \alpha_{i+1}$.
- Conclude that, when $\alpha_i = \alpha_{i+1}$,

$$E^{\sigma}_{lpha} = \sum_{T \in \mathsf{NAF}(lpha, \sigma)} \mathsf{wt}(T) = \sum_{U \in \mathsf{NAF}(lpha, \sigma s_i)} \mathsf{wt}(U) = E^{\sigma s_i}_{lpha}.$$

T	Н			T	Н	
A	Ν	K	\longleftrightarrow	Α	Ν	K
Y	0	U		0	Y	U

Part IV

Appendix

$\alpha = (2,2,0,1)$, $\sigma = [3,1,2,4]$, content (1,2,0,2)

Future Work: $\alpha_i \neq \alpha_{i+1}$ via probabilistic bijections

If $\alpha_i < \alpha_{i+1}$ and $\sigma_i > \sigma_{i+1}$, then

$$E_{s_i\alpha}^{\sigma}(X;q;t) = E_{\alpha}^{\sigma s_i}(X;q;t) + \frac{t^{\phi(\alpha,\sigma,i)}(1-t)}{1-q^{L+1}t^A}E_{\alpha}^{\sigma}(X;q;t)$$

where $A = \operatorname{arm}(x)$ and $L = \operatorname{leg}(x)$ for $x = (i+1, \alpha_i + 1) \in \operatorname{dg}(\alpha)$.

Idea for Proof of Balance Condition

Define the component of the weight contributed by the row r such that

$$\operatorname{wt}_{q,t}(T) = \prod_{\operatorname{row} r} \operatorname{wt}_{q,t}(r)(T).$$

- Define the probability that the pointer moves up in row r denoted by $\rho^{(r)}(T)$.
- Prove "balance condition" row-by-row:

$$\begin{aligned} \operatorname{wt}_{q,t}^{(r)}(T) \cdot \rho^{(r)}(T) &= \operatorname{wt}_{q,t}^{(r)}(U) \cdot \rho^{(r)}(U) \quad \text{or} \\ \operatorname{wt}_{q,t}^{(r)}(T) \cdot \left(1 - \rho^{(r)}(T)\right) &= \operatorname{wt}_{q,t}^{(r)}(U) \cdot \left(1 - \rho^{(r)}(U)\right), \end{aligned}$$

with the appropriate choice of ρ (move pointer up) or $1-\rho$ (delete).

References

Alexandersson, Per (2019). "Non-symmetric Macdonald polynomials and Demazure–Lusztig operators". In: Séminaire Lotharingien de Combinatoire 76, Art. B76d, 27.

Corteel, Sylvie, Olya Mandelshtam, and Lauren Williams (2022). "From multiline queues to Macdonald polynomials via the exclusion process". In: *American Journal of Mathematics* 144.2, pp. 395–436.

Ferreira, Jeffrey Paul (2011). "Row-strict quasisymmetric Schur functions, characterizations of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials". PhD thesis. California, United States: University of California, Davis. 90 pp.

Frieden, Gabriel and Florian Schreier-Aigner (2024). qtRSK*: A probabilistic dual RSK correspondence for Macdonald polynomials. arXiv: 2403.16243.

Macdonald, Ian G. (1988). "A new class of symmetric functions.". In: Séminaire Lotharingien de Combinatoire 20, B20a, 41 p.—B20a, 41 p.

— (1996). "Affine Hecke algebras and orthogonal polynomials". In: Astérisque 237. Talk no. 797, pp. 189–207.